Probably the most advanced skateboard in the world – made by thyssenkrupp!

Apprenticeship at thyssenkrupp | Career at thyssenkrupp | Engineering | mobility of the future | People at thyssenkrupp | What do California and the quiet little town of Ilsenburg in the heart of Germany’s Harz region have in common? Probably not a lot – until the two apprentices Sarah Vogel and Max Jäger hatched an audacious plan.

Legend has it that the skateboard was invented in the 1950s in sunny California. The first boards were little more than just a piece of wood with steel rollers  – and pretty questionable handling. Who would have even dreamt back then what would be created around 70 years later and 14,000 kilometers away in Ilsenburg in Germany? As part of an apprenticeship project at thyssenkrupp Camshafts in Ilsenburg, the apprentices Sarah Vogel and Max Jäger developed a skateboard equipped with state-of-the-art technology. Apart from the traditional basics (deck and two axles, each with two wheels), it has virtually nothing in common with the boards from the last century.

Innovative mobility solution for the “last mile”

And because thyssenkrupp Camshafts in Ilsenburg is one of the world’s most innovative and successful companies in the area of camshafts, valve train components and cylinder head covers for cars, trucks and motorcycles, Sarah and Max didn’t want to do things by halves. They needed to come up with a really innovative and spectacular concept. As a new, urban mobility solution for the “last mile” and with a certain coolness factor, the idea of an e-longboard – an electrically powered, slightly longer version of a skateboard particularly well suited to cruising – pretty much suggested itself.

Rethinking the skateboard in Ilsenburg

And the more the two mechatronics apprentices thought about their joint project, the longer the list of technical specifications became, ultimately resulting in one of the world’s most advanced skateboards. You could say the pair have done nothing less than write skateboard history.

“We began by gaining an overview,” says Sarah. “What is available on the market, what do people want and above all: What can we do better?” Evidently quite a lot.

Perfectly equipped training shop

In just over six weeks Sarah and Max designed, developed, produced and optimized their longboard, which has a raft of features. Firstly they designed the longboard using advanced CAD software and carried out static load simulations. The two apprentices then manufactured all the parts in the training shop in Ilsenburg: some required casting, others CNC milling. Last but not least the control system and communication environment needed to be programmed. Throughout the process they benefitted from the optimum resources at their training shop. “Our company is very well equipped and we have all the machinery we need,” says training manager Immo Fricke.

E-drive unit is the centerpiece

The centerpiece of the electrically powered longboard is the drive unit. As the pair based their concept on conventional skateboard axles which the rider also uses to steer by transferring their weight across them, the drive concept needed to be carefully thought out. As the axle structure made it impossible to use a single drive unit for both wheels on one axle, the budding mechatronics specialists selected a “DualDriveUnit” with offset individual electric motors to drive each wheel.

“We decided to use a toothed belt for the drive unit as it offers several advantages, for example compared with a wheel hub drive,” says Max. “On the one hand it provides a further reduction ratio and on the other hand it enables the drive to run more smoothly, resulting in a more comfortable ride and above all preventing jolting when setting ff”. The system offers a peak output of 8,800 watts. Clearly visible black lines on the floor of the training shop are testament to the performance of the longboard – much to the satisfaction of the training manager. It’s a good thing that the top speed is limited to 27 km/h.

Sarah and Max present their e-longboard

KERS, cruise control and traction control…

The Ilsenburg apprentices also included a kinetic energy recovery system for the brakes (KERS). This system converts the kinetic energy generated when braking into electrical energy, which is stored in the lithium polymer battery and can then be used for the drive unit or other purposes. This flat aluminum battery installed under the deck not only offers a range of up to 45 kilometers, it can also be used to power external devices up to 800W. “It was important to us to be able to use the energy elsewhere too. When you aren’t riding the board, it can be used to charge or operate other electrical devices such as a cellphone or even a hedge trimmer,” says Max, who wants to study mechanical engineering after completing his apprenticeship, with a grin.

The features of the e-longboard read like those of a modern car. After all, the thyssenkrupp apprentices weren’t about to miss the opportunity to fit the board with traction control, cruise control and ABS. As a modern device, the e-longboard can also be connected with a smartphone or smartwatch. Despite the numerous technical gadgets, “the board weighs just 14.21 kilograms fully assembled,” Max is delighted to report.

“It’s unique”

The result is a truly spectacular product. Training manager Immo Fricke says, not without pride: “A longboard like this with this type of battery and such a high power output is unique. Everyone who has seen the board thinks it’s great. And I’m sure that many people didn’t think we could come up with something like that here.” Under the supervision of Immo Fricke the apprentices in Ilsenburg work on practical projects in each year of their apprenticeships. He strongly believes that “such projects are important for developing teamwork skills, craftsmanship and creativity. We want to motivate our apprentices to make an active contribution, develop something and spark a fire in them, so to speak.” That worked extremely well in the case of Sarah and Max: “The project was great fun,” says Max. “Everything we’ve learnt in our training we have been able to repeat from A to Z in practice.”

The e-longboard is now available to other apprentices as a modular concept for further development. That’s if optimization potential can actually be found anywhere …


Stefan Kaiser

Where to buy the skateboards? 🙂


Donicio First-Rider
  • written by Donicio First-Rider
  • 3. August 2020

Is this skateboard going to be available to the public worldwide?

Leave a Reply

Your email address will not be published. Required fields are marked *

Related articels

Engagement | People at thyssenkrupp | thyssenkrupp worldwide | Work safety | Ravindra Yadav is passionate about running and yoga. And as the 46-year-old is convinced that exercise not only makes you feel better but also helps you work better, he decided to do something about it: As Senior Manager Human Resources Development at thyssenkrupp Electrical Steel in Nashik, India, he motivates his colleagues to take part in sporting activities themselves.
Digitalisation and industry 4.0 | future of production | innovation | trends of technology | "BIM" is the abbreviation for "Building Information Modeling". This is a method that can significantly reduce errors and misplanning in plant construction. How? By using data to visualize the future: Our colleagues at thyssenkrupp Plant Technology are already using BIM today for the forward-looking planning of industrial plants.
engineering together
Career at thyssenkrupp | Engagement | Engineering | People at thyssenkrupp | Work safety | South Africa is the African country most severely impacted by the COVID-19 crisis. Government and industry have taken a rigorous approach in responding to the pandemic. But that wasn’t enough for Brian Mashabela, so he decided to take action himself: At thyssenkrupp Industrial Solutions South Africa the engineer designed t-shirts to help colleagues remember the coronarules.
Apprenticeship at thyssenkrupp | Career at thyssenkrupp | People at thyssenkrupp | With an excellent A-levels in his pocket a study was set for Jan Rohde. But finding the right course of study was not as easy as expected. It was only through the detours of law and teacher training course - both combined with frustration and a lot of theory - that he finally found out that he was missing the practical part. So the solution to his problem was a dual course of study that offered him both: theory and practice.
Apprenticeship at thyssenkrupp | Career at thyssenkrupp | People at thyssenkrupp | Heike Meurers is a very experienced vocational trainer. She has been working at thyssenkrupp Materials Services in Essen for over 20 years, where she looks after young professionals. She is mainly responsible for apprentices and dual students in the commercial apprenticeship and study programs. As the first point of contact, she is available to provide advice and assistance to all and has a clear focus on the quality of thyssenkrupp´s training.